Tissue-distribution of aldehyde dehydrogenase 2 and effects of the ALDH2 gene-disruption on the expression of enzymes involved in alcohol metabolism.

نویسندگان

  • Tsunehiro Oyama
  • Toyohi Isse
  • Norio Kagawa
  • Tsuyoshi Kinaga
  • Yong-Dae Kim
  • Masaru Morita
  • Kenji Sugio
  • Henry Weiner
  • Kosei Yasumoto
  • Toshihiro Kawamoto
چکیده

In alcohol metabolism, acetaldehyde, a highly reactive intermediate that may cause cellular and DNA damages, is converted to acetate by mitochondrial aldehyde dehydrogenase ALDH2. Although the majority of ingested alcohol is eliminated in the liver, the first-pass metabolism of ethanol in the upper digestive tract is also important for prevention and management of ethanol-related gastrointestinal diseases. However, the tissue-distribution of Aldh2 in mice has been poorly investigated. In this study, therefore, we investigated the tissue-distribution of Aldh2 as well as Aldh1, Cyp1a1, Cyp2e1, and Cyp4b1 in wild type and Aldh2-null mice by immuno-histochemical analysis. The human liver and esophageal tissues were also examined. In mice, the Aldh2 protein was detected in the liver, lung, heart, kidney, testis, esophagus, stomach, colon, and pancreas, suggesting that the tissue-distribution of Aldh2 in mice is similar to that in humans. Therefore, Aldh2-null mice may be useful model animals for the investigation of alcohol metabolism and related diseases. Compared with the wild type, the expression level of Cyp2e1 was increased in the liver from Aldh2-null mice based on Western blot analysis, whereas the levels of Aldh1, Cyp1a1, and Cyp4b1 were indistinguishable. This observation suggests that a metabolite(s) of Aldh2 might down-regulate the expression of Cyp2e1 gene.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Genetics of Alcohol Metabolism: Role of Alcohol Dehydrogenase and Aldehyde Dehydrogenase Variants

The primary enzymes involved in alcohol metabolism are alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH). Both enzymes occur in several forms that are encoded by different genes; moreover, there are variants (i.e., alleles) of some of these genes that encode enzymes with different characteristics and which have different ethnic distributions. Which ADH or ALDH alleles a person carri...

متن کامل

Molecular cloning, baculovirus expression, and tissue distribution of the zebrafish aldehyde dehydrogenase 2.

Ethanol is metabolized to acetaldehyde mainly by the alcohol dehydrogenase pathway and, to a lesser extent, through microsomal oxidation (CYP2E1) and the catalase-H(2)O(2) system. Acetaldehyde, which is responsible for some of the deleterious effects of ethanol, is further oxidized to acetic acid by aldehyde dehydrogenases (ALDHs), of which mitochondrial ALDH2 is the most efficient. The aim of ...

متن کامل

Molecular Basis of Alcohol-Related Gastric and Colon Cancer

Many meta-analysis, large cohort studies, and experimental studies suggest that chronic alcohol consumption increases the risk of gastric and colon cancer. Ethanol is metabolized by alcohol dehydrogenases (ADH), catalase or cytochrome P450 2E1 (CYP2E1) to acetaldehyde, which is then further oxidized to acetate by aldehyde dehydrogenase (ALDH). Acetaldehyde has been classified by the Internation...

متن کامل

PKC-ALDH2 Pathway Plays a Novel Role in Adipocyte Differentiation

The ALDH2 gene encodes the mitochondrial aldehyde dehydrogenase 2 (ALDH2), a critical enzyme involved in ethanol clearance through acetaldehyde metabolism. ALDH2 also catalyzes the metabolism of other bioreactive aldehydes, including propionaldehyde, butyraldehyde, and 4-hydroxykenals (4-HNE). Increased levels of 4-HNE in adipose tissue positively correlate with obesity and insulin resistance. ...

متن کامل

Association between polymorphisms of ethanol-metabolizing enzymes and susceptibility to alcoholic cirrhosis in a Korean male population.

Alcohol is oxidized to acetaldehyde by alcohol dehydrogenase (ADH) and cytochrome P-4502E1 (CYP2E1), and then to acetate by aldehyde dehydrogenase (ALDH). Polymorphisms of these ethanol-metabolizing enzymes may be associated with inter-individual difference in alcohol metabolism and susceptibility to alcoholic liver disease. We determined genotype and allele frequencies of ALDH2, CYP2E1, ADH2, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Frontiers in bioscience : a journal and virtual library

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2005